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The aim of this study was to develop a structure-property model for membrane partitioning
of oligopeptides using statistical design methods and multivariate data analysis. A set of 20
tetrapeptides with optional N-methylations at residues 2 and 4 was designed by a D-optimal
design procedure. After synthesis and purification, the membrane partitioning abilities of the
peptides were tested in two chromatographic systems with phospholipids as the stationary
phase: immobilized artificial membrane chromatography (IAM) and immobilized liposome
chromatography (ILC). The relationship between these measures and three different sets of
calculated descriptors was analyzed by partial least-squares projection to latent structures
(PLS). The descriptors used were the molecular surface area, Molsurf parameters, and Volsurf
parameters. All three models were of good statistical quality and supported that a large
hydrogen-bonding potential and the presence of a negative charge impair membrane partition-
ing, whereas hydrophobic parameters promote partitioning. The findings are in accordance
with what has been found for absorption of known drugs and have implications for the design
of peptide-like drugs with good oral bioavailability.

Introduction

Often the barrier for a new drug candidate to reach
the market is deficient pharmacokinetic properties,
particularly absorption from the intestinal epithelium,1,2

rather than lack of potency. These poor statistics have
augmented the effort to develop new screening strate-
gies so as to incorporate pharmacokinetic and biophar-
maceutical considerations in the optimization of lead
compounds. On the basis of the structure of well-known
drugs, a number of successful approaches for predicting
absorption from molecular structure have been devel-
oped. Depending on the structural diversity of the
molecules under study, the absorptive properties may
be predicted from the size of the molecular polar surface
area alone3,4 or in combination with other factors.5 Even
absorption in humans has been modeled by these
methods.6,7 However, when it comes to peptides and
peptidic drugs, the understanding is still somewhat
lacking. The potential for this class of drugs is inher-
ently growing as more natural, potent peptidic ligands
are being discovered and the biotechnological capability
is growing.8 To rationally develop well-absorbed peptidic
drugs, an improved comprehension of the relationship
between the peptide structure and the absorption
process is necessary.

Generally, the most important route of drug absorp-
tion is passive diffusion through the epithelial cells
(transcellular transport). One of the crucial steps in this

process is the partitioning of the drug from the extra-
cellular aqueous environment, into - and through - the
lipophilic cellular membrane. The present understand-
ing of peptide absorption implies that the hydrogen-
bonding potential is a major determinant for membrane
permeation. The hydrogen-bonding potential is inversely
correlated to membrane permeation, as there is a large
energy penalty for breaking the hydrogen bonds be-
tween the solute and the aqueous environment before
transport through the membrane.9 It has been found
that sequentially reducing the number of hydrogen bond
donors by N-methylating the backbone amides within
a homologous series increases epithelial permeation in
Caco-2 cells10 and rats.11 Similarly, N-methylation has
recently been used to improve the oral bioavailability
in a novel series of growth hormone-stimulating pep-
tides.12 Additionally, conformational preferences,13 size,
and overall charge14 also play a role. Eventually, all
these factors, which are interrelated to some degree,
depend on the amino acid sequence. In summary, the
present evidence suggests that the factors known to
govern absorption of known drugs, e.g. the polar surface
area, which is related to the hydrogen-bonding potential,
also influence peptide absorption and thus membrane
partitioning. In support of this view, Barlow and Satoh15

have estimated limiting polar and total surface areas
for membrane permeation. However, these estimates
may be further refined as they were based on the
traditional “ideal” log Poctanol of 2-3 for allowing mem-
brane transport. Generally, a poor correlation between
log Poctanol and membrane transport has been found for
peptides.9,10 Recently, Stenberg et al.16 have proposed
a predictive model for Caco-2 cell permeability of
dipeptides using a combination of polar and nonpolar
surface areas. However, it is uncertain whether this
model can be extrapolated to new peptidic drugs, which
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often have 3-6 amino acids in the basic structure. Thus,
the aim of the present study is to develop a structure-
property model for membrane partitioning for this group
of peptides using statistical design methods and mul-
tivariate data analysis.

Methodology

De Novo Design of Model Peptides. Apart from
the unspecific knowledge that more lipophilic molecules
are better absorbed, no real “lead compound” exists with
respect to membrane partitioning. As opposed to the
specific molecular recognition involved in receptor bind-
ing, one end of the molecule is presumably not more
important than the other in this nonspecific interaction.
When no parts of the molecule need to be held fixed in
order to fit into a pharmacophore model, it allows for
simultaneous variation of all parts of the molecule.
Thereby, the pitfalls of changing one factor at a time
and finding false optima are avoided.17

A fixed number of 4 amino acids for all peptides was
chosen in order to represent the majority of new
peptidic or pseudopeptidic drugs typically having 3-6
amino acids in the basic structure. Furthermore, it
keeps the number of necessary design factors at a
minimum while allowing to see distinct secondary
structure, such as â-turns, in solution. The number of
peptides to be synthesized and tested was limited to 20.
To study the interaction between sequence, â-turn
formation, and N-methylations, an option for N-methy-
lation of residues 2 and 4 was included in the design.
At residue 4, the formation of an internal hydrogen bond
in a â-turn is impaired by an N-methylation, which in
return reduces the hydrogen-bonding potential directly.
The amide hydrogen at residue 2 is not directly involved
in stabilizing the â-turn. Rather, the consequence of an
N-methylation in this position is a reduction of the
hydrogen-bonding potential, but it probably also leads
to a secondary alteration of the conformational prefer-
ences and, thus, has potential for stabilizing/destabiliz-
ing other conformations with internal hydrogen bonds.

Each amino acid in the peptides was described by
three principal properties, z1-z3, thus adding up to 12
descriptors per peptide. These descriptors are part of
an updated version of the z-scales previously published
by Hellberg et al.18 that now includes five principal
properties (z1-z5) for 87 natural and unnatural amino
acids.19 The interpretation of the three major properties
is the same as in the original z-scales: i.e. z1 describes
hydrophilicity, z2 describes size/polarizability, and z3 is
interpreted as electronic effects.

Design Procedure. When varying 4 positions in a
tetrapeptide using the 20 naturally occurring amino
acids and multiplying with the 4 permutations of
N-methylations, it adds up to 640 000 sequences. This
large number constitutes the candidate set from which
the 20 representative peptides of the training set should
be selected. Due to the very reduced and constrained
nature of the problem (see below), it was not feasible to
use a fractional factorial design. Instead, a computer-
generated D-optimal design was used.20 A D-optimal
algorithm is an exchange algorithm, which picks out
experimental runs from the candidate set for which the
determinant D of the X′X matrix is maximized.21 To
increase the probability of finding the global optima it

has to be repeated several times. As opposed to the
factorial designs, it utilizes the quantitative information
contained in the design variables, not just the binary
information of + and -.

Due to the excessive data handling of finding the
D-optimal of a 640 000 × 12 matrix, the candidate set
of 640 000 was reduced to 4410 by applying the con-
straints listed below:

a. Selection of 10 out of the 20 genetically coded amino
acids based on the distribution of their principal proper-
ties, z1-z3 (cf. Table 1).

b. Minimum one aromatic residue per peptide for
sensitive detection by fluorescence.

c. Maximum one ionizable residue of each sign per
peptide to reduce overall charge.

d. Minimum three different amino acids per peptide.
e. No proline in positions 1 and 4.
f. Assignment of N-methylations by randomization

after completion of design.
The experimental space under study is thus restricted

by the vertexes made up of the highly irregular hyper-
cube defined by the 4410 × 12 matrix.

In preliminary D-optimal designs, 18 out of 20 pep-
tides contained at least one ionizable residue. It is very
likely that the presence of a charge at physiological pH
impairs diffusion across a lipophilic membrane, so a
training set with 18 charged peptides would cover a
narrow range of absorption properties. To overcome this,
a stepwise procedure was used. In step 1, 13 neutral
peptides were selected from the neutral sequences of
the candidate set. These 13 sequences were used as
inclusions in step 2 in which 4 monocharged peptides
were added (finding the D-optimal of 17 peptides of
which 13 are default). Finally, the 13 + 4 peptides were
used as inclusions in step 3 selecting the 3 zwitterionic
peptides. The D-optimal algorithm was repeated at least
40 times, and the training set with the combination of
a good G-efficiency (>50%21) and a good distribution of
polar surface area and van der Waals volume was
passed on to the next step. The latter criterion was
applied to ensure an adequate variation in two of the
major factors determining absorption. It partially com-
pensates for the fact that no direct information about
the overall properties of the peptides is contained in the
design when designing from the fragment descriptors.
The final G-efficiency of 46.3% is slightly below 50%,
which by rule of thumb is the threshold for an accept-
able D-optimal design. Nevertheless, this is the best
design obtainable for this strongly reduced and con-

Table 1. Principal Properties of the 20 Genetically Coded
Amino Acids19

no.a
amino
acid z1 z2 z3 no.a

amino
acid z1 z2 z3

1 Asp 3.98 0.93 1.93 11 Ala 0.24 -2.32 0.60
2 Gln 1.75 0.50 -1.44 12 Arg 3.52 2.50 -3.50
3 Gly 2.05 -4.06 0.36 13 Asn 3.05 1.62 1.04
4 Leu -4.28 -1.30 -1.49 14 Cys 0.84 -1.67 3.71
5 Lys 2.29 0.89 -2.49 15 Glu 3.11 0.26 -0.11
6 Phe -4.22 1.94 1.06 16 His 2.47 1.95 0.26
7 Pro -1.66 0.27 1.84 17 Ile -3.89 -1.73 -1.71
8 Ser 2.39 -1.07 1.15 18 Met -2.85 -0.22 0.47
9 Tyr -2.54 2.44 0.43 19 Thr 0.75 -2.18 -1.12

10 Val -2.59 -2.64 -1.54 20 Trp -4.36 3.94 0.59

a Numbers 1-10: amino acids used for the design. Numbers
11-20: amino acids not used for the design.
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strained design problem. The sequences of the peptides
are listed in Table 2 and are hereafter referred to by
their roman numerals. The peptides were N-terminally
acetylated and C-terminally amidated in order to reduce
overall charge and reduce the risk of enzymatic degra-
dation in biological systems.

Synthesis. The peptides were synthesized by solid-
phase synthesis using Fmoc chemistry and a Rink
amide resin as the solid support. HoBt (or HoAt) and
EDC (or DIC) were used as coupling reagents. Where
available, Fmoc N-methylated amino acids were used.
Otherwise, an on-site N-methylation procedure was
used.22 Methylation was accomplished for serine,
glutamine, tyrosine, and lysine, but not valine (in
compound XX (cf. Table 2)). A resynthesis of peptide XX
was not attempted. After purification by semiprepara-
tive HPLC, the purity was confirmed in two different
chromatographic systems (as judged from the UV trace
at 214 nm). The identity of the peptides was confirmed
by LC-MS, PD-MS, and amino acid analysis.

Membrane Partitioning. The ability of the 19
peptides to interact with membrane phospholipids was
assessed in two chromatographic systems: immobilized
liposome chromatography (ILC)23 and immobilized ar-
tificial membrane (IAM)24 chromatography. The chro-
matographic capacity factors, Ks and k′IAM, for the IL
and IAM columns, respectively, were calculated from
the retention time of the peptides recorded relative to
a void volume marker. Theoretically, partitioning in the
ILC system consisting of multi- and bilayered liposomes
entrapped in a chromatographic gel is a better model
of the cellular membrane than IAM chromatography
where the phospholipid derivatives are forming a mono-
layer, being covalently linked to silica particles. How-
ever, from a practical point of view the IAM column is
more attractive, as each ILC column needs to be
individually prepared whereas the IAM column is
commercially available. In case there is a difference
between them when measuring partitioning of peptides
- as has been suggested for small molecule drugs23 -

the two systems may contain complementary informa-
tion relevant for the transcellular transport process.

In general, Ks is a good predictor for transport in
Caco-2 cells as has been shown for a series of structur-
ally diverse drugs.23 As for IAM, the correlation to in
vivo absorption is reasonable (Caco-2 permeability R2

) 0.56, percent absorbed in rat perfusion R2 ) 0.63) for
structurally diverse compounds.24 This is superior over
k′w (the capacity factor from an octadecylsilyl column
often used to estimate log Poctanol), but clearly, some
properties relevant for membrane diffusion are not
measured by k′IAM. This may be due to the different
composition of phospholipids between the immobilized
membrane and living cells, interaction with other
membrane components such as proteins, and perhaps
also the fact that positive membrane interactions are
not necessarily promoting diffusion across the mem-
brane. Similar considerations hold for Ks.

Theoretical Characterization. The peptides were
multivariately characterized by (1) calculated molecular
surface properties: polar, nonpolar, and total water-
accessible surface area; (2) Molsurf25 parameters: phys-
icochemical characteristics derived from a quantum
mechanical wave function; and (3) Volsurf26 param-
eters: characteristics derived from calculations of in-
teraction energies with a water and a lipophilic probe
using GRID27 (cf. Experimental Section). The Volsurf
descriptors are listed in Table 4.

Statistical Analysis. The membrane partitioning
ability of the 19 peptides as measured by log Ks and log
k′IAM was related to the various molecular descriptors
by means of partial least-squares projections to latent
structures (PLS)17 using the statistical software Simca-
P.28 As described above, peptide XX was not synthe-
sized, and thus, it was excluded from the statistical
analysis. Before analysis, all variables were scaled to
unit variance and centered (autoscaling). To achieve a
normal distribution of the log Ks values they were
transformed as log(measured Ks + 0.3). The quality of
the models was expressed as the explanatory power, R2,

Table 2. Characteristics of the 20 Model Peptides

peptide sequence MW Mlogpa log Ks
b log k′IAM

c A1d B1e log D7.4
f pKa1

g pKa2
h

I Ac-Gly-Leu-Asp-NMePhe-NH2 505.58 -0.18 -0.15 -0.55 29.3 28.7 3.93
II Ac-Phe-Pro-Phe-Tyr-NH2 613.73 1.19 1.54 1.20 35.9 35.4 1.64
III Ac-Gly-NMeGly-Leu-Phe-NH2 447.55 0.09 0.59 -0.12 29.7 28.7 0.05
IV Ac-Lys-NMeGly-Tyr-NMeAsp-NH2 550.63 -1.13 -0.54 -1.09 11.0 ndi 3.60 9.69
V Ac-Tyr-Gly-Gly-Gln-NH2 465.10 -1.90 0.23 -0.54 10.7 10.7 -2.59
VI Ac-Asp-Gln-Leu-Phe-NH2 562.64 -0.86 -0.16 -0.69 26.2 26.2 >-2.50 3.97
VII Ac-Gly-NMePhe-Lys-Asp-NH2 519.59 -0.90 -0.73 -1.09 16.0 17.7 3.78 10.31
VIII Ac-Ser-NMePhe-Gly-Gly-NH2 421.47 -1.30 0.12 -0.66 16.9 16.7 -1.51
IX Ac-Lys-NMePhe-Gly-NMeLeu-NH2 532.15 0.41 0.57 0.05 26.4 28.0 -1.33 9.94
X Ac-Gln-Gln-Phe-NMeGly-NH2 534.03 -1.67 -0.19 -0.93 15.8 16.0
XI Ac-Phe-Gln-Lys-NMeLeu-NH2 589.20 -0.29 0.19 -0.16 23.1 24.6 10.06
XII Ac-Phe-Leu-Val-NMeLeu-NH2 546.65 1.53 1.17 0.58 40.3 40.3 2.42
XIII Ac-Phe-NMeGln-Gln-NMeSer-NH2 577.65 -1.96 -0.12 -0.82 18.0 17.7
XIV Ac-Gly-NMeAsp-Phe-NMeLys-NH2 534.63 -0.69 -0.58 -1.05 18.1 19.8 ndi ndi

XV Ac-Val-NMeGln-Ser-NMePhe-NH2 534.63 -0.89 0.14 -0.44 22.6 25.0
XVI Ac-Val-NMeTyr-Leu-Gln-NH2 576.70 -0.22 0.39 0.07 26.3 26.2
XVII Ac-Ser-NMeLeu-Tyr-Gln-NH2 564.70 -1.22 0.24 -0.23 19.6 19.5
XVIII Ac-Gln-Pro-Gln-Phe-NH2 559.64 -1.65 -0.03 -0.75 17.8 17.9
XIX Ac-Leu-Val-Tyr-Gly-NH2 491.60 0.06 0.39 0.03 23.8 23.7
XXj Ac-Gly-Ser-Tyr-NMeVal-NH2 479.55 -1.08

a Log Poctanol/water calculated according to Moriguchi.43 b Capacity factor on the ILC column. Average standard deviation of Ks was 0.02
log unit. c Capacity factor on the IAM column. Standard deviations were similar as for Ks. d Retention time in chromatography system A1
(cf. Experimental Section). e Retention time in chromatography system B1 (cf. Experimental Section). f Distribution coefficient between
n-octanol and Hanks buffered saline solution, pH 7.4, determined by the shake flask method. g,h pKa values determined by potentiometric
titration.33 i nd: not determined. j The N-methylation of valine was not accomplished, and thus, this peptide was excluded from the
statistical analysis.
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and the predictive power, Q2, based on cross-validation29

by leaving one-seventh of the data out.
Generally, variable selection was accomplished by

excluding all variables with a VIP value (variable
importance in the projection) below 1 and, subsequently,
keeping only the variables, which induced an increase
in the predictive value of the model. The VIP value is a
weighted sum of squares of the PLS weights, w, taking
into account the amount of explained y variance of each
PLS dimension according to:30

where VIP(k) is the VIP value for variable k, wak
2 is the

squared PLS weight of variable k for component a,
SSY%(a) is the percentage sum of squares of y explained
by component a, SSY%(cum) is the total percentage
explained sum of squares for the entire model, and K is
the number of variables.

Furthermore, from variables with overlapping PLS
loadings (signifying essential identical information con-
tent), a representative with the largest VIP value was
chosen. Next, to account for undetected nonlinear
relationships, it was attempted to include squared terms
based on all the remaining variables. Again, only the
squared terms with VIP > 1 were kept in the model.
After this final optimization, the y-values were random-
ized 10 times and models using the same x-variables
as the original model were built. The validity of the
models was additionally tested by a permutation test.30

When plotting R2 and Q2 as a function of the correlation
coefficient between the original values and the predicted
values, the intercept with the y-axis expresses to which
degree these values rely on chance. Generally, if the
model is valid, the intercept for Q2 should be negative
and for R2 it should be below 0.3.30

Results and Discussion

Design. When designing from molecular fragment
descriptors it is assumed that the sum of the parts adds
up to give the properties of the entire peptide. Further-
more, it is anticipated that a statistically balanced
composition of amino acids also leads to a balanced
distribution of membrane partitioning abilities. How-
ever, the distribution of Ks and k′IAM values (cf. Table
2) indicates that this is not the case. With the exception
of the two peptides with the fewest hydrophilic side

chains (II and XII), the peptides have capacity factors
within a relatively narrow range. Even though the
designed peptides have a balanced variation of residues,
they seem to have a bias toward overall hydrophilic
properties. The common hydrophilic scaffold of the
backbone polar atoms may explain this bias. These
atoms are major contributors to the total hydrogen-
bonding potential, and so the observable effect of a
particular side chain on partitioning is biased by this
intrinsic hydrophilicity of a tetrapeptide. Beforehand,
it was largely unknown how the nature and position of
particular side chains can counteract this basic hydro-
philicity, and thus it was not possible to include this
information in the design. However, this training set
provides a realistic basis for predicting the membrane
partitioning properties of tetrapeptides in general. A
generalizable model will be useful for optimizing the
membrane partitioning abilities of new peptidic drugs,
which use the natural peptide ligand as a starting
structure.

ILC versus IAM. Despite the different structures of
the stationary phase of the IL and IAM columns, the
capacity factors from the two columns are highly cor-
related as shown in Figure 1. However, they are not
numerically identical (cf. Table 2), which is probably due
to different amounts of lipids available for partitioning.
Ks is corrected for the amount of immobilized phospho-
lipids, whereas k′IAM is not. The apparent similarity of
the columns may be explained by a combination of the
similarity between the headgroups of the phospholipids
(phosphatidylcholine) and the hydrophilicity of the
peptides. If the peptides are predominantly partitioning
to the vicinity of the headgroup region (which is similar),
the thickness or number of phospholipid layers is of
minor importance. If a larger range of capacity factors
is included the difference is probably more pronounced.23

Model Building. As shown in Table 3, four models
have been built from the various sets of parameters
described in Methodology. The suffices a and b denote
increasingly improved models in which the number of
variables has been optimized and reduced to give the
best model possible with a particular set of descriptors.
In Table 5, the statistical quality of the models is shown.
All models have good explanatory powers (R2) and are
low dimensional; i.e. they have only one or two compo-
nents. The components (or latent variables) are linear
combinations of the original variables. The influence
from each variable is expressed as its loading. In the
optimized versions of models 2-4, excellent predictive
powers (Q2) in the range 0.8-0.9 have been obtained
for log Ks as well as for log k′IAM. Model 1 employing
the amino acid descriptors z1-z3 has the lowest quality
of all the models before and after optimization. How-
ever, it is remarkable that a relatively good predictive
power is obtained if using only the hydrophilicity (z1-
values) of the individual amino acids as in model 1b.
Nevertheless, the poorer quality corroborates the above
discussion that the properties of the individual amino
acids are not sufficient for describing the whole peptide.

In Figure 2a-d the PLS loadings for all four, nonop-
timized models are depicted. The parameters constitut-
ing the final, optimized models are highlighted with
italics. In all the two-component models (Figure 2b-d),
log Ks and log k′IAM are located in the upper, right

Table 3. List of Descriptors Used for the Multivariate Analysis

model
no. descriptors

1a z1, z2, and z3 for all four amino acids
1b z1 (hydrophilicity) for all four amino acids
2a PWASA,a NPWASA, TWASA, P/NWASA, P/TWASA,

charge (0/1), presence of N-methylations (0/1)
2b PWASA, NPWASA, NPWASA2, negative charge,

N-methylation at position 4 (0/1)
3a all Volsurf parametersb

3b Volsurf parameters: V, V2, W5, Cw5, D1, D2, ID1, CP, CP2

4a all Molsurf parametersc

4b Molsurf parameters: log P, log D, pKa (acid),
polarizability, Lewis base

ref all parameters from models 1b, 2b, 3b, and 4b
a Cf. list of abbreviations and Supporting Information. b Cf.

Table 4. c Cf. Supporting Information.

VIP(k) ) [[∑a[(wak
2) × SSY%(a)]]/SSY%(cum)] × K
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quadrant. The parameters with influence on the first
PLS component are found in the horizontal direction
and on the second component in the vertical direction.
Parameters far away from the origin in either direction
have a large influence on the particular component and
vice versa.

In all models, the first component may be interpreted
as a hydrophilicity/hydrophobicity axis. Although the
hydrophilic/hydrophobic factors are not loading in ex-
actly the same direction in all models due to slightly
different information content in these factors combined
with the influence from the second component, it is
possible to derive some general trends from the models.
In the coefficient plots for the optimized models in
Figure 2e-h, the parameters have been divided into two
groups: those advantageous and those disadvantageous
for membrane partitioning, having positive and negative
regression coefficients, respectively. Regression coef-
ficients from PLS are interpreted in the same way as
regression coefficients in multiple linear regression with
the important notion that they are not independent. The
coefficients from e.g. model 3b define the linear rela-
tionship between log Ks and the Volsurf parameters:

(scaled and centered variables).
The factors impairing membrane partitioning are

related to hydrophilicity and hydrogen-bonding factors,
such as the polar surface area (model 2) and large

Table 4. Definition and Significance of Volsurf Parameters

parameter definition
VIP > 1 in
model 3a

significance
in model 3b

V total water-accessible volume at 0.20 kcal/mol V V, V2

S total water-accessible surface area at 0.20 kcal/mol none
R total volume/total surface area, V/S none
G globularity; total surface area/surface area of sphere with volume V none
W1-W8 hydrophilic regions at 8 levels of interaction energy with water probe

(-0.2, -0.5, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0 kcal/mol)
W2-W7 W5

(-3.0 kcal/mol)
Iw1-Iw8 hydrophilic integy moment at 8 energy levels as above; measure of the unbalance

between the center of mass and the position of hydrophilic regions
none

Cw1-Cw8 capacity factors at 8 energy levels as above; ratio between the
hydrophilic regions and total surface area, W/S

Cw1-Cw8 Cw5
(-3.0 kcal/mol)

D1-D8 hydrophobic regions at 8 levels of interaction energy with DRY probe
(-0.2, -0.4, -0.6, -0.8, -1.0, -1.2, -1.4, -1.6 kcal/mol)

D1, D2 D1, D2

ID1-ID8 hydrophobic integy moments at 8 energy levels as for D1-D8;
measure of the unbalance between the center of mass and
the position of hydrophobic regions

ID1, ID2 ID1

Emin1-Emin3 3 lowest energy minima for interaction energy with water probe none
D12, D13, D23 distances between Emin1-Emin3 none
HL1, HL2 hydrophilic-lipophilic balance; ratios W4/D3 and W5/D4 HL1
A amphiphilic moment; length of a vector pointing from the center of the

hydrophobic domain to the center of the hydrophilic domain
none

CP critical packing parameter defined as:
(volume of hydrophobic part at -0.6 kcal/mol)/
[(surface of hydrophilic part at -3.0 kcal/mol)*
(length of hydrophobic part at -0.6 kcal/mol)]

CP CP, CP2

POL average molecular polarizability calculated from an additive method POL

Table 5. Statistical Quality of the Models

model no. Na Ab RMSEc (log Ks) RMSEc (log k′IAM) R2 d (overall) Q2 e (overall) R2 f (intercept) Q2 f (intercept)

1a 12 1 0.32 0.36 0.69 0.23 0.55 0.03
1b 4 1 0.33 0.27 0.75 0.70 0.09 -0.10
2a 10 2 0.22 0.28 0.84 0.66 0.26 -0.13
2b 5 1 0.18 0.25 0.87 0.83 0.08 -0.19
3a 39 2 0.20 0.16 0.87 0.70 0.45 -0.12
3b 9 2 0.17 0.13 0.94 0.90 0.23 -0.14
4a 13 2 0.25 0.27 0.85 0.67 0.32 -0.12
4b 5 1 0.17 0.23 0.86 0.79 0.18 -0.16
ref 23 1 0.12 0.15 0.94 0.89 0.29 -0.19

a N: number of descriptors in the model (for details cf. Table 3). b A: number of significant PLS components determined by cross-
validation. c RMSE: residual mean square error. d R2 (overall): degree of variation explained by the model (combined for log Ks and log
k′IAM). e Q2 (overall): predictive power (combined for log Ks and log k′IAM). f R2 and Q2 (intercept): intercept with the y-axis after permuation
of log Ks (cf. Methodology); permutation of k′IAM gave similar results.

Figure 1. Correlation between the capacity factors log k′IAM

and log Ks, determined on an IAM column and an ILC column,
respectively, for the 19 peptides.

log Ks ) 0.290 - 0.223W5 - 0.310Cw5 - 0.288ID1 +

0.222V + 0.077V2 + 0.194D1 + 0.012D2 +

0.040CP + 0.073CP2
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Figure 2. (a-d) PLS loadings for the models 1a, 2a, 3a, and 4a. (e-h) Plots of autoscaled PLS regression coefficients for models
1b, 2b, 3b, and 4b (optimized models).
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hydrophilic regions defined by the interaction with the
water probe at -3.0 kcal/mol (model 3). After optimiza-
tion, model 4 does not contain any factors impairing
membrane partitioning although Figure 2d indicates a
negative, nonsignificant influence of Lewis acid and
hydrogen bond donor abilities. Partitioning is promoted
by factors related to lipophilicity and size. In model 2,
this is expressed as a large nonpolar surface area and
in model 4 by high log P/log D values and polarizability.
In model 3 these factors are modeled by large values of
the critical packing factor and large hydrophobic areas
measured by interactions with the DRY probe at levels
-0.2 and -0.4 kcal/mol. In model 3b, the energy levels
for the factors chosen for the model should not be
interpreted too strictly. To reduce the number of factors,
a few representatives with the largest VIP were chosen
from the clusters of overlapping factors although they
were almost equally good (cf. Figure 2c). Initially, it was
attempted to build a reference model using all descrip-
tors from the nonoptimized models and excluding
nonsignificant variables as described in Methodology.
However, the model was not superior to model 3b, and
many of the minor factors in each model were not
significant according to the VIP criteria (model not
shown). Thus, to compare all the factors in the optimized
models, a reference model was built using all the factors
without further optimization. As can be seen from
Figure 3, depicting the loadings of the reference model,
the same factors as discussed above display positive and
negative loadings and promote and impair partitioning,
respectively.

The validity of the models is strongly substantiated
by the fact that three different methods for molecular
characterization point to the same overall properties as
being important. As would be expected, a combination
of hydrophilic and lipophilic factors is necessary to
explain the partitioning behavior of the peptides. More
importantly, the models relate to the relative impor-
tance of these factors. Within homologous series of
compounds it has often been found that one single
parameter such as the traditionally used log Poctanol or
the polar surface area suffices to explain the absorption/
partitioning. However, it is well-known that for peptides
(and several other classes) a poor correlation exists
between log Poctanol and absorption.9,12,13 Also, if using
more diverse compounds, a combination of hydrophilic
and hydrophobic parameters is necessary as demon-

strated in recent reports.6,16 Using a linear combination
of the polar and nonpolar surface areas, Stenberg et al.
achieved a good predictive model for transport of dipep-
tides in Caco-2 cells16 and Winiwarter et al. modeled
the fraction of drugs absorbed in humans using a
combination of the number of H-bond donors, polar
surface area, and calculated log Poctanol.6

Effect of Charge. As judged from model 2, a negative
charge is strongly unfavorable for partitioning, whereas
a positive charge has a minor effect as it is not a
significant term in the model. This finding is supported
by model 4 in which partitioning is promoted by a high
pKa value for acids, i.e. acids which are not ionized at
physiological pH. Analogously, the pKa value for bases
corresponding to a positive charge at pH 7.4 was not
significant in the model.

A similar difference between the opposite charges was
found by Pauletti et al.14 studying IAM retention times
of peptides carrying positive, negative, or no charges.
Similarly, k′IAM of bases has been found to be largely
independent of the degree of protonization.31 Further-
more, Austin et al.32 found that primary amines have a
much stronger affinity for liposomes than carboxylates
with similar structure. Recently, Avdeef et al.33 have
contributed to a more profound understanding of this
phenomenon. They found that the charged species of
amphiphilic acids have less affinity for PC-based lipo-
somes than bases have, compared to their corresponding
neutral form. Their concept of ionized bases, better
complementing the charge/H-bond structure of the PC
membrane than ionizable acids, may also be used to
explain the present findings: when an amine with its
hydrophobic parts buried in the membrane becomes
ionized, it moves within the membrane as the primary
site of interaction changes from a hydrogen-bonding
interaction between the neutral amine and the CdO
group of the headgroup to an electrostatic interaction
between the charged amine and the negative phosphate
group.33 However, moving a negative charge from the
CdO group to the positively charged, more superficially
positioned choline group is energetically less favorable.
This was explained by the longer distance of movement
and the requirement for a positive counterion located
deeper within the membrane at the negative phosphate
group.33

Effect of Overall Size. In model 2a, the total size
as expressed by TWASA has a minor, positive effect on
partitioning but is not significant in the optimized
model. However, in models 3b and 4b the total size
expressed as the molecular volume and the molecular
surface area (which may be used interchangeably with
polarizability in this case), respectively, has a major
positive influence. These size measures may be inter-
preted as lipophilicity terms, which are not necessary
in model 2 - suggesting that in this model this
information is already more strongly expressed in the
other factors (PWASA, NPWASA). In conclusion, it is
probably not the size as such which promotes partition-
ing as the diffusion coefficient within the membrane is
inversely related to the size.34 Rather, the size is
correlated with lipophilicity, and so an apparent positive
effect is seen.

Effect of N-Methylation. Model 2a suggests that
N-methylation in positions 2 and 4 impairs partitioning.

Figure 3. PLS loadings for the reference model with all the
descriptors from the optimized models (1b, 2b, 3b, and 4b).
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This is in contrast to what would be expected from
studies in which increasing the number of N-methyla-
tions in a homologous series of peptides increased
transepithelial transport in Caco-2 cells10 and rats.11

The N-methylations load in the same direction as the
polar surface area (Figure 2b), and the effect may thus
be interpreted as an increased hydrophilicity of the
peptide. However, in this low-dimensional model, the
effect is mixed up with effects of the molecular size
parameters, and therefore, a detailed interpretation
should be cautious. It may be speculated that a positive
effect of N-methylation is only seen when the neighbor-
ing amino acids are lipophilic and/or the overall hydro-
philicity of the peptide is low. To further elucidate the
matter, a new, extended design with room to determine
interaction effects should be made.

Critical Packing Factor. The larger RMSE (re-
sidual mean square error) of models 2 and 4 as com-
pared to model 3 is mainly caused by a large residual
of peptide II. This peptide has a Ks value at least 2 times
larger than the rest of the set. Only when including at
least one of two shape/hydrophobicity factors (CP and
D2) from the Volsurf set in models 2 and 4 is the residual
of II decreased to the same level as in model 3. Due to
the proline in position 2, II has a kink and is thus more
folded and globular than the remaining peptides. For
peptides being simultaneously globular and lipophilic,
CP seems to be a good descriptor of their membrane
partitioning abilities.

Effect of Conformation. The size of the polar and
nonpolar surface area varies considerably with the
conformation.3 Using just one conformation for these
calculations is nevertheless yielding a model of high
quality, which suggests that it may not be necessary to
include the conformational variability to explain the
partitioning behavior. On the other hand, the fact that
the molecular surface properties are missing the infor-
mation equivalent to CP may be an effect from using a
single conformation. Hypothetically, the conformation-
ally dependent, Boltzmann averaged molecular surface
properties3,4,8 might give a better representation of the
molecule, particularly II. To elucidate this, a conforma-
tional analysis has been performed for six of the
peptides covering the entire range of Ks values (II, V,
VIII, IX, XII, XIIII); 1000 different conformations were
generated via high-temperature molecular dynamics
(MD) as described in the Experimental Section. No
significant difference was found between the PWASA
of the single conformation used and the Boltzmann
averaged PWASA. Based on this data set, it seems
unlikely that the information contained in CP can be
derived from the conformationally dependent molecular
surface properties. However, the interpretation should
be cautious as the conclusion is based mainly on II for
which CP has a big contribution.

Comparison of Methods. Model 1b with the z1
descriptors of the individual amino acids is a very fast
method, but its predictive power is not sufficient for
accurate predictions. Model 2 is also very rapid, as only
one calculation is needed to derive the molecular surface
properties of a compound. However, the information
content of these properties may not be sufficient for all
peptides, as was demonstrated in the case of II. Whether
this is a general phenomenon or II is belonging to a

special class of lipophilic proline-containing peptides
still has to be shown. In previous studies, the Molsurf
parameters used in model 4 have performed well for
predicting blood-brain barrier permeability35 and trans-
port across Caco-2 cells.36 In this study, Molsurf had a
performance comparable to that of the molecular surface
properties. Molsurf has the advantage of giving an
output of traditional physicochemical properties, which
are intuitively easy to comprehend. The major draw-
backs are the CPU-time-demanding semiempirical and
ab initio calculations. Furthermore, the calculated log
P and log D values deviate up to 2 orders of magnitude
from the experimental values (cf. Table 2 and Support-
ing Information). Unquestionably, Molsurf log P and log
D are important lipophilic parameters as they are the
most important factors in model 4. They may be used
as such in the model but should not be interpreted as
octanol/water partition and distribution coefficients in
absolute terms.

With respect to computational effort, Volsurf is be-
tween the molecular surface approach and Molsurf. As
Volsurf is based on GRID,27 these parameters are
mainly limited by the parametrization of GRID. The
advantage of Volsurf as compared to the molecular
surface approach is that the atoms are ranked according
to the strength of potential hydrogen bonds. The polar
and nonpolar surface areas are solely discriminated by
the definition of hydrogen-bonding atoms, which are all
given the same weight. Thus, for novel compounds with
unknown H-bonding properties, the definition may be
too crude, as exemplified previously.3 If parametrization
is a problem, then the Molsurf ab initio approach may
be more appropriate despite its limitations.

Conclusion

Although a strong inverse relation to hydrogen-
bonding factors and membrane partitioning was found,
there is still a possibility that Ks underestimates the
negative influence of hydrogen bonding on diffusion
through the membrane. The lipophilic part of the
peptides may be positioned within the membrane while
the backbone amides are hydrogen bonding with the
polar headgroups - aligning the backbone parallel to
the plane of the bilayer.37 This would promote mem-
brane partitioning but not necessarily diffusion across
the membrane. A finding like that would conform with
the hydrogen-bonding potential hypothesis stating that
the rate-determining step for membrane passage of
peptides is the breaking of the hydrogen bonds between
the solute and the phospholipid headgroups.9-11

It was possible to set up a statistical design using 19
(20) peptides as representatives for those of the 640 000
possible N-methylated tetrapeptides falling within the
criteria for the constraints. On the basis of this rational
design, three high-quality structure-property models
for membrane partitioning of small peptides could be
proposed. All three models indicated that the molecular
properties known to be important for absorption of
known drugs are also important for membrane parti-
tioning of peptides. The models established here may
be used for improving the membrane partitioning
properties of new peptidic drugs. Although it is obvious
that exchanging a hydrophilic amino acid with a hy-
drophobic one improves membrane partitioning, the
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models can be used as guidelines to judge whether the
improvement will be enough to reach a certain “target
membrane partitioning” or if further changes are neces-
sary. The modeling work presented here will be even
more useful when future transport studies allow to
combine theoretical descriptors, membrane partitioning,
and absorption rate in a biological system into a
complete model of peptide absorption.

Experimental Section

Abbreviations: IAM, immobilized artificial membrane
(chromatography); ILC, immobilized liposome chromatogra-
phy; k′IAM, capacity factor from IAM column; Ks, capacity factor
from ILC column; PWASA, polar water-accessible surface area;
NPWASA, nonpolar water-accessible surface area; TWASA,
total water-accessible surface area; NMe-2, N-methylation at
residue 2; NMe-4, N-methylation at residue 4; PLS, partial
least-squares projection to latent structures; R2, explanatory
power; Q2, predictive power from cross-validation; VIP, vari-
able importance in the projection; RMSE, residual mean
square error; PBS, phosphate-buffered saline.

Synthesis of Peptides. As starting support for the syn-
thesis, 0.1 mmol of 4-((2′,4′-dimethoxyphenyl)(Fmoc-amino)-
methyl)phenoxy resin (Rink amide resin) (Novabiochem, Bad
Soden, Germany) with a substitution capacity of 0.46-0.68
mmol/g (150-230 mg) was used. All reagents were added in
4× excess (0.4 mmol). The resin was placed in a 20-mL BioRad
reactor tube, allowing for vacuum suction for all washing steps.
Fmoc protection groups were cleaved off by 20% piperidine in
DMF followed by washing with 4 × 5 mL of DMF. Subsequent
amide couplings were achieved at room temperature with
N-ethyl-N′-(3-dimethylaminopropyl)carbodiimide hydrochlo-
ride (EDC) or N,N-diisopropylcarbodiimide (DIC) as coupling
reagent and N-hydroxybenzotriazole (HoBt) or 1-hydroxy-7-
azabenzotriazole (HoAt) as activating agent. The latter was
used when acylating secondary amines (proline or N-methy-
lated amino acids) in which case overnight coupling was used.
For HoBt, the coupling time was g1 h. Prior to adding the
Fmoc amino acid to the reactor it was stirred for 15 min in 3
mL of DMF with the carbodiimide and HoAt or HoBt as
appropriate.

Commercially available Fmoc amino acids and Fmoc N-
methylated amino acids were used. However, in the case of
N-Me-Ser, N-Me-Tyr, N-Me-Lys, and N-Me-Gln, which are not
commercially available, an on-site methylation procedure was
used.22 Briefly, after deprotecting the end amino acid of the
growing peptide chain it was converted to an activated
sulfonamide by means of o-nitrobenzenesulfonyl chlorides (o-
NBS) under collidine catalysis. Methylation of the sulfonamide
was achieved by adding methyl p-nitrobenzenesulfonate (MNBS)
along with 1,3,4,6,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-
a]pyrimidine (MTBD) as deprotonating agent to promote
selective methylation. Finally, the o-NBS group was cleaved
off by 1,8-diazabicyclo[5.4.0]undecen-7-ene (DBU) and â-mer-
captoethanol. After washing with 4 × 5 mL of DMF, the
coupling continued with HoAt and carbodiimide as coupling
reagents. When using the same procedure for Val in compound
XX, methylation was not accomplished. This was probably due
to steric hindrance between the â-branched valine and the
bulky reagents used for the methylation.

N-Terminal acetylation was done by treatment with 100 µL
(8× excess) of acetic acid anhydride in 3 mL of DMF for 1 h.
Peptides I-XII were cleaved from the resin by 3.6 mL of TFA/
phenol/ethanedithiol/thioanisole/water (40:3:1:2:2) for 1 h at
room temperature and peptides XIII-XVIIII with 3 mL of
TFA under the same conditions. Purification was done by
semipreparative RP-HPLC. After purification, the peptides
were lyophilized.

Analytical HPLC. Method A1: The column was equili-
brated with 5% acetonitrile in a buffer consisting of 0.1 M
ammonium sulfate, which was adjusted to pH 2.5 with 4 M

sulfuric acid. After injection the sample was eluted by a
gradient of 5-60% acetonitrile in the same buffer during 50
min.

Method B1: The column was equilibrated with 5% aceto-
nitrile/0.1% TFA/water and eluted by a gradient of 5% aceto-
nitrile/0.1% TFA/water to 60% acetonitrile/0.1% TFA/water
during 50 min. The RP-HPLC analysis was performed using
UV detection at 214, 254, 276, and 301 nm on a Vydac
218TP54 4.6-mm × 250-mm 5-µm C-18 silica column, which
was eluted at 1 mL/min at 42 °C.

PDMS (plasma desorption mass spectrometry) analysis was
performed on a Bio-ion (Applied Biosystems) system using a
Californium 252 (Cf252) source on a nitrocellulose matrix.

Immobilized Liposome Column. The immobilized lipo-
some column was made according to Beigi et al.23 Liposomes
were prepared by evaporation of diethyl ether from a solution
of egg yolk phospholipids and hydration of the formed lipid
film by 10 mM TRIS buffer, pH 7.4. 6 mL of liposome
suspension (0.6 mg/mL) was mixed with 440 mg of dry
Superdex 200 (Pharmacia Biotech, Sweden). After this mixture
was degassed, the immobilization was completed by five
freeze-thaw cycles (freezing at -70 °C for 5 min followed by
thawing at 25 °C for 5 min). Nonimmobilized liposomes were
removed by centrifugal washes. The material was packed to a
total bed volume of 3.4 mL in a 4-mL glass column (HR 5/20,
Pharmacia Biotech, Sweden). After the column was equili-
brated with PBS buffer, pH 7.4, on a standard HPLC system,
flow rate 0.5 mL/min, the retention time of the peptides was
measured with UV detection at 210 nm and compared to that
of the void volume marker, K2Cr2O7. The amount of phospho-
lipids immobilized on the column was determined by a
modified phosphorus analysis23 and used to calculate the
capacity factor as follows:

where tR ) retention time.
IAM Column. The IAM column was a commercially avail-

able 10-cm IAM.PC.DD column (Regis Technologies) eluted at
1 mL/min with 0.01 M PBS buffer, pH 7.4. The void volume
marker was citric acid. The capacity factor k′IAM was calculated
as follows:

where tR ) retention time.
Theoretical Characterization. The peptides were built

in Sybyl 6.439 in an extended conformation and energy
minimized with the Amber 4.0 force field as implemented in
Sybyl. The water-accessible surface area of the peptides was
calculated by the analytical algorithm Savol3.40 The polar
surface area was defined as the surface area of oxygen and
nitrogen atoms and hydrogen atoms attached to them. The
nonpolar surface area was calculated as the total minus the
polar surface area. Molsurf descriptors were derived essentially
as described by Norinder et al.35 Briefly, in Spartan41 geometry
optimization was performed by the semiempirical method
AM1,42 followed by a single energy calculation at the quantum
chemical 3-21G level. Molsurf uses the output from the 3-21G
calculation to calculate the local ionization potential in a grid
around the molecule and then translates that into physico-
chemical descriptors such as log P, pKa, and hydrogen-bonding
properties. Log D at pH 7.4 was calculated from log P and pKa.

The basis for the Volsurf26 descriptors is interaction energies
calculated by the GRID program.27 Using GRID version 16,
the polar and hydrophobic properties were assessed as the
isopotential contours at 8 energy levels for interaction energies
with a water and a DRY probe. From the volumes of the
isoenergetic contours, Volsurf derives the parameters listed
in Table 4.

The log P value was calculated using the program mlogp.43

Conformational Analysis. 1000-ps high-temperature MD
at 1000 K with sampling every picosecond was performed in

Ks ) (tR(peptide) - tR(K2Cr2O7
)/(molar amount of phospholipids)

k′IAM ) (tR(peptide) - tR(citric acid))/tR(citric acid)
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Sybyl 6.439 (Amber 4.0 force field), thus producing 1000
conformers. The conformers generated by the MD served as
input for an energy minimization using the force field MM3*
with water solvation (GB/SA continuum model) as imple-
mented in Macromodel.44 The performance of the conforma-
tional analysis was evaluated by examination of a Ramachan-
dran plot for each residue, supplemented with plots of the ø1

torsional angles. The Boltzmann averaged molecular surface
parameters were calculated as described previously.3
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